老虎机游戏在线玩-小蜜蜂老虎机技巧_百家乐桌子租_全讯网2 融天下 (中国)·官方网站

搜索
你想要找的

1月3日 吳啟亮:Weak Diffusive Stability Induced by High-order Spectral Degeneracies
2025-01-03 13:30:00
主講人:吳啟亮
開始時間:2025-01-03 13:30:00
舉行地點(diǎn):閔行校區(qū)數(shù)學(xué)樓401室
主辦單位:數(shù)學(xué)科學(xué)學(xué)院
報告人簡介

吳啟亮老師目前是俄亥俄大學(xué)副教授,博士生導(dǎo)師。其主要研究方向包括非線性動力學(xué)和模式形成。在J.Math.Pures Appl.Proc.Amer.Math.Soc.,J.Differential Eqns.,J.Math.Biol.,J.Dyn.Diff.Eqns.,Discrete Contin.Dyn.Syst.等刊物上發(fā)表多篇論文。


內(nèi)容簡介

The Lyapunov stability of equilibria in dynamical systems is determined by the interplay between the linearization and nonlinear terms. In this talk, we present our recent results on the case when the spectrum of the linearization is diffusively stable with high-order spectral degeneracy at the origin. Roll solutions at the zigzag boundary of the Swift-Hohenberg equation are shown to be nonlinearly stable, serving as examples that linear decays weaker than the classical diffusive decay, together with quadratic nonlinearity, still give nonlinear stability of spatially periodic patterns. The study is conducted on two physical domains: the 2D plane and the infinite 2D torus. Linear analysis reveals that, instead of the classical $t^{-1}$ diffusive decay rate, small perturbations of zigzag stable roll solutions decay with slower algebraic rates ($t^{-3/4}$ for the 2D plane; $t^{-1/4}$ for the infinite 2D torus) due to the highorder degeneracy of the translational mode at the origin in the Bloch-Fourier spaces. The nonlinear stability proofs are based on decompositions of the neutral translational mode and the faster decaying modes, and fixed-point arguments, demonstrating the irrelevancy of the nonlinear terms.


百家乐路子分析| 百家乐官网全讯网娱乐城 | 百家乐官网游戏| 罗定市| 保时捷百家乐娱乐城| 现金百家乐游戏| 百家乐庄闲的冷热| 百家乐官网投注网中国| 安阳百家乐赌博| 带百家乐官网的时时彩平台| 大发888游戏平台 新葡京| 电子百家乐官网打法| 娱乐城注册送58| 百家乐如何洗吗| 百家乐官网象棋赌博| 德州扑克 教学| 专业百家乐分析| 大发888娱乐城rfgjdf888bg| 金赞百家乐官网的玩法技巧和规则| 博彩旅游业| 公海百家乐的玩法技巧和规则| 百家乐官网免费送现金| 甘泉县| 威尼斯人娱乐场xpjgw5xsjgw| 百家乐官网筹码防伪套装| 百家乐官网扑克玩法| 女优百家乐官网的玩法技巧和规则 | 任你博百家乐官网娱乐城| 游戏| 大发888下载安装| 澳门百家乐国际| 百家乐官网路技巧| 在线赌博网| 如何玩百家乐扑克| 网上百家乐官网赌法| 娱乐城注册送18| 百家乐赢的技巧| 娱乐百家乐官网的玩法技巧和规则 | 玉田县| 百乐门娱乐城注册| 威尼斯人娱乐代理注|