老虎机游戏在线玩-小蜜蜂老虎机技巧_百家乐桌子租_全讯网2 融天下 (中国)·官方网站

搜索
你想要找的

12月19日 孟德宇:MLR-SNet (Meta-LR-Schedule-Net): Transferable LR Schedules for Heterogeneous Tasks
2024-12-19 15:00:00
活動主題:MLR-SNet (Meta-LR-Schedule-Net): Transferable LR Schedules for Heterogeneous Tasks
主講人:孟德宇
開始時間:2024-12-19 15:00:00
舉行地點:普陀校區理科大樓A1114
主辦單位:統計學院、統計交叉科學研究院
報告人簡介

孟德宇,西安交通大學教授,博導,大數據算法與分析技術國家工程實驗室機器學習教研室負責人。發表論文百余篇,谷歌學術引用超過31000次。現任IEEE Trans.PAMI,NSR等7個國內外期刊編委。目前主要研究聚焦于元學習、概率機器學習、可解釋性神經網絡等機器學習基礎研究問題。


內容簡介

The learning rate (LR) is one of the most important hyperparameters in stochastic gradient descent (SGD) algorithm for training deep neural networks (DNN). However, current hand-designed LR schedules need to manually pre-specify a fixed form, which limits their ability to adapt to practical non-convex optimization problems due to the significant diversification of training dynamics. Meanwhile, it always needs to search proper LR schedules from scratch for new tasks, which, however, are often largely different with task variations, like data modalities, network architectures, or training data capacities. To address this learning-rate-schedule setting issues, we propose to parameterize LR schedules with an explicit mapping formulation, called \textit{MLR-SNet}. The learnable parameterized structure brings more flexibility for MLR-SNet to learn a proper LR schedule to comply with the training dynamics of DNN. Image and text classification benchmark experiments substantiate the capability of our method for achieving proper LR schedules. Moreover, the explicit parameterized structure makes the meta-learned LR schedules capable of being transferable and plug-and-play, which can be easily generalized to new heterogeneous tasks. We transfer our meta-learned MLR-SNet to query tasks like different training epochs, network architectures, data modalities, dataset sizes from the training ones, and achieve comparable or even better performance compared with hand-designed LR schedules specifically designed for the query tasks. The robustness of MLR-SNet is also substantiated when the training data are biased with corrupted noise. We further prove the convergence of the SGD algorithm equipped with LR schedule produced by our MLR-Net, with the convergence rate comparable to the best-known ones of the algorithm for solving the problem. {The source code of our method is released at https://github.com/xjtushujun/MLR-SNet.)


浦北县| 真人百家乐官网是骗局| 战神百家乐的玩法技巧和规则| 新葡京官网| 百家乐巴厘岛上海在线| 捷豹百家乐的玩法技巧和规则 | 圆梦城百家乐官网娱乐城| 百家乐代理合作| 百家乐官网网站排名| 大发888官网注册| 百家乐官网博彩技巧视频| 百家乐赌场详解| 百家乐官网投注平台信誉排名| 威尼斯人娱乐城官方| 百家乐官网学院教学视频| 顶级赌场是真的吗| 玩百家乐新太阳城| 宝博百家乐官网娱乐城| 百家乐博彩软件| 克拉克百家乐官网试玩| 大发888官方df888gfxzylc8| 百家乐赢赌场百家乐| 百家乐官网开户投注| 鸿发娱乐| 威尼斯人娱乐城官方网址| 关于阳宅风水24山知识| 百家乐官网有方式赢钱吗| 大发888娱乐场17| 玩百家乐澳门皇宫娱乐城| 百家乐官网游戏机破解方法| 姚记娱乐城信誉最好| 百家乐哪里可以玩| 澳门百家乐官网群代理| 百家乐官网永利娱乐城| 万博88| 百家乐网开服表| 百家乐电话投注多少| 反赌百家乐官网的玩法技巧和规则 | 大赢家即时比分| 大发888老虎机平台| 百家乐博娱乐场开户注册|