老虎机游戏在线玩-小蜜蜂老虎机技巧_百家乐桌子租_全讯网2 融天下 (中国)·官方网站

搜索
你想要找的

12月19日 孟德宇:MLR-SNet (Meta-LR-Schedule-Net): Transferable LR Schedules for Heterogeneous Tasks
2024-12-19 15:00:00
活動主題:MLR-SNet (Meta-LR-Schedule-Net): Transferable LR Schedules for Heterogeneous Tasks
主講人:孟德宇
開始時間:2024-12-19 15:00:00
舉行地點:普陀校區理科大樓A1114
主辦單位:統計學院、統計交叉科學研究院
報告人簡介

孟德宇,西安交通大學教授,博導,大數據算法與分析技術國家工程實驗室機器學習教研室負責人。發表論文百余篇,谷歌學術引用超過31000次。現任IEEE Trans.PAMI,NSR等7個國內外期刊編委。目前主要研究聚焦于元學習、概率機器學習、可解釋性神經網絡等機器學習基礎研究問題。


內容簡介

The learning rate (LR) is one of the most important hyperparameters in stochastic gradient descent (SGD) algorithm for training deep neural networks (DNN). However, current hand-designed LR schedules need to manually pre-specify a fixed form, which limits their ability to adapt to practical non-convex optimization problems due to the significant diversification of training dynamics. Meanwhile, it always needs to search proper LR schedules from scratch for new tasks, which, however, are often largely different with task variations, like data modalities, network architectures, or training data capacities. To address this learning-rate-schedule setting issues, we propose to parameterize LR schedules with an explicit mapping formulation, called \textit{MLR-SNet}. The learnable parameterized structure brings more flexibility for MLR-SNet to learn a proper LR schedule to comply with the training dynamics of DNN. Image and text classification benchmark experiments substantiate the capability of our method for achieving proper LR schedules. Moreover, the explicit parameterized structure makes the meta-learned LR schedules capable of being transferable and plug-and-play, which can be easily generalized to new heterogeneous tasks. We transfer our meta-learned MLR-SNet to query tasks like different training epochs, network architectures, data modalities, dataset sizes from the training ones, and achieve comparable or even better performance compared with hand-designed LR schedules specifically designed for the query tasks. The robustness of MLR-SNet is also substantiated when the training data are biased with corrupted noise. We further prove the convergence of the SGD algorithm equipped with LR schedule produced by our MLR-Net, with the convergence rate comparable to the best-known ones of the algorithm for solving the problem. {The source code of our method is released at https://github.com/xjtushujun/MLR-SNet.)


百家乐遥控洗牌器| 百家乐风云论坛| 欧洲娱乐场| 百家乐官网六手变化混合赢家打法 | 太阳城娱乐城官网| 模拟百家乐官网游戏软件| 百家乐官网追号工具| 广州百家乐筹码| 娱乐城百家乐官网高手| 澳门百家乐官网游戏官网| 大发888 现金棋牌游戏| 澳门百家乐官网怎赌才能赚钱| 金宝博百家乐官网游戏| 百家乐出闲几率| 威尼斯人娱乐场官网h00| 网上玩百家乐官网会出签吗| 长赢百家乐赌徒| 优惠搏百家乐官网的玩法技巧和规则| 棋牌游戏易发| 百家乐赢钱好公式| 百家乐官网扑克玩法| 888百家乐的玩法技巧和规则| 金花百家乐官网娱乐城| 大发888是什么东| 查风水24山| 百家乐官网2珠路投注法| 免费百家乐过滤软件| 缅甸百家乐官网的玩法技巧和规则| 百家乐平玩法官方网址| 机械手百家乐官网的玩法技巧和规则 | 玩百家乐678娱乐城| 百家乐官网销售视频| 大玩家百家乐的玩法技巧和规则| 迅盈网球比分| 伯爵百家乐娱乐场| 百家乐官网博娱乐网提款速度快不| 云顶国际网站| 澳门百家乐娱乐网| 百家乐官网平台是最好的娱乐城| 九乐棋牌官网| 百家乐社区|